martes, 21 de mayo de 2013

segunda ley mendel

Esta ley se la conoce también como la Ley de la herencia independiente de caracteres.
x
Figura 7

Mendel concluyó que diferentes rasgos son heredados independientemente unos de otros, no existe relación entre ellos, por tanto el patrón de herencia de un rasgo no afectará al patrón de herencia de otro. Cada uno de ellos se transmite siguiendo las leyes anteriores con independencia de la presencia del otro carácter.
Sólo se cumple en aquellos genes que no están ligados (en diferentes cromosomas) o que están en regiones muy separadas del mismo cromosoma. Es decir, siguen las proporciones 9:3:3:1.
Para llegar a esta ley Mendel cruzó plantas de arvejas de semilla amarilla y lisa con plantas de semilla verde y rugosa ( Homocigóticas ambas para los dos caracteres).
Las semillas obtenidas en este cruzamiento eran todas amarillas y lisas, cumpliéndose así la Ley de la uniformidad para cada uno de los caracteres considerados, y revelándonos también que los alelos dominantes para esos caracteres son los que determinan el color amarillo y la forma lisa.
x
Figura 8

Las plantas obtenidas y que constituyen la F1 son dihíbridas (AaBb).
Estas plantas de la F1 se cruzan entre sí, teniendo en cuenta los gametos que formarán cada una de las plantas. Se puede apreciar que los alelos de los distintos genes se transmiten con independencia unos de otros, ya que en la segunda generación filial F2 aparecen arvejas amarillas y rugosas y otras que son verdes y lisas, combinaciones que no se habían dado ni en la generación parental (P), ni en la filial primera (F1).
Asimismo, los resultados obtenidos para cada uno de los caracteres considerados por separado, responden a la primera ley (de la segregación).
Los resultados de los experimentos de la segunda ley refuerzan el concepto de que los genes son independientes entre sí, que no se mezclan ni desaparecen generación tras generación.
x
Figura 9

Para esta interpretación fue providencial la elección de los caracteres, pues estos resultados no se cumplen siempre, sino solamente en el caso de que los dos caracteres a estudiar estén regulados por genes que se encuentran en distintos cromosomas. No se cumple cuando los dos genes considerados se encuentran en un mismo cromosoma, es el caso de los genes ligados.
En la etapa de metafase I de la meiosis I, los cromosomas están alineados en la región ecuatorial. El orden en el plano ecuatorial es al azar y determina la dirección que tomará cada uno de los cromosomas homólogos en las células hijas, fenómeno conocido como permutación cromosómica.
Sin embargo, el orden de migración entre cromosomas no homólogos a las células hijas es independiente entre sí y dependerá del orden azaroso que tengan los cromosomas en el plano ecuatorial.
De esta forma se deduce que la segunda ley de Mendel o de asociación independiente, ocurre en la metafase I, ya que pueden existir varias combinaciones posibles, por ejemplo, entre dos pares de cromosomas homólogos, llegando a formar cuatro tipos de gametos distintos si se alinean de una forma y cuatro muy distintos si se alinean de otra.
A modo de acotación importante, debemos destacar que en la meiosis la segunda ley de Mendel (de la asociación independiente) ocurre en la Metafase I, o sean antes que la primera (ley de la segregación), que ocurre en la Anafase I.

Interacciones alélicas

Tal y como Mendel descubrió en sus experimentos, entre los alelos de un mismo gen se producen interacciones. Él definió las relaciones de dominancia y de recesividad, pero existen otras.
Por ejemplo, los alelos no son siempre dominantes o recesivos, existen ocasiones en que se produce codominancia entre ellos, es decir, que ambos alelos aportan información para la manifestación del rasgo de que se trate. Algo así ocurre con los alelos que controlan el grupo sanguíneo en los seres humanos.
Existen tres alelos para el grupo sanguíneo, A, B, O. Cada alelo codifica para una proteína sanguínea excepto el O, que no codifica para ninguna. Una persona con grupo O tendrá un genotipo OO y en su sangre no se detectarán estas proteínas. Por tanto, al donar sangre, al no existir la proteína el cuerpo receptor no reacciona ante la transfusión. Por esto se dice que el grupo O es el donante universal.
En el caso de que una persona sea del grupo A o B, querrá decir que su sangre presenta una u otra proteína. Pero cuando una persona del grupo A tiene un hijo con otra del grupo B, puede ocurrir que ese hijo sea del grupo AB, es decir, que exprese de forma simultanea ambas proteínas, sin que ninguna domine sobre la otra.
Otra posibilidad que también descubrió Mendel en cuanto a las interacciones de los alelos es la llamada herencia intermedia. Esta interacción la descubrió experimentando con la planta llamada "dondiego de noche", que presenta flores de coloraciones diversas.
En los seres humanos existe algo similar en la herencia de una enfermedad, la anemia falciforme, que se caracteriza por una forma anómala de los glóbulos rojos que dificulta el transporte de oxígeno. Padres con anemia falciforme que tienen hijos con personas sanas pueden tener hijos cuyos glóbulos rojos presenten una forma intermedia entre ambos.

No hay comentarios:

Publicar un comentario