martes, 21 de mayo de 2013

Gregor Mendel

Gregor Mendel nació el 20 de julio de 1822 en un pueblo llamado Heinzendorf (hoy Hynčice, en el norte de Moravia, República Checa) perteneciente al Imperio austrohúngaro, y fue bautizado con el nombre de Johann Mendel. Tomó el nombre de padre Gregorio al ingresar como fraile agustino, en 1843, en el convento de agustinos de Brno (conocido en la época como Brünn). En 1847 se ordenó sacerdote.
Mendel fue titular de la prelatura de la Imperial y Real Orden Austriaca del emperador Francisco José I director emérito del Banco Hipotecario de Moravia, fundador de la Asociación Meteorológica Austriaca, miembro de la Real e Imperial Sociedad Morava y Silesia para la Mejora de la Agricultura, Ciencias Naturales y Conocimientos del País y jardinero (aprendió de su padre cómo hacer injertos y cultivar árboles frutales).
Mendel presentó sus trabajos en las reuniones de la Sociedad de Historia Natural de Brünn (Brno) el 8 de febrero y el 8 de marzo de 1865, y los publicó posteriormente como Experimentos sobre hibridación de plantas (Versuche über Plflanzenhybriden) en 1866 en las actas de la Sociedad. Sus resultados fueron ignorados por completo, y tuvieron que transcurrir más de treinta años para que fueran reconocidos y entendidos.Curiosamente, el mismo Charles Darwin no sabía del trabajo de Mendel, según lo que afirma Jacob Bronowski en su célebre serie/libro El ascenso del hombre.
Al tipificar las características fenotípicas (apariencia externa) de los guisantes las llamó «caracteres». Usó el nombre «elemento» para referirse a las entidades hereditarias separadas. Su mérito radica en darse cuenta de que en sus experimentos (variedades de guisantes) siempre ocurrían en variantes con proporciones numéricas simples.
Los «elementos» y «caracteres» han recibido posteriormente infinidad de nombres, pero hoy se conocen de forma universal con el término genes, que sugirió en 1909 el biólogo danés Wilhem Ludwig Johannsen Para ser más exactos, las versiones diferentes de genes responsables de un fenotipo particular se llaman alelos. Los guisantes verdes y amarillos corresponden a distintos alelos del gen responsable del color.

Ley de uniformidad


A esta ley se la llama también Ley de la uniformidad de los híbridos de la primera generación (F1), y establece que si se cruzan dos razas puras (homocigotos) para un determinado carácter, los descendientes (híbridos) de la primera generación serán todos iguales entre sí (igual fenotipo e igual genotipo) e iguales (en fenotipo) a uno de los progenitores.
No es una ley de transmisión de caracteres, como ya dijimos, sino de manifestación de dominancia frente a la no manifestación de los caracteres recesivos.
Mendel llegó a esta conclusión trabajando con una variedad pura de plantas de arvejas que producían las semillas amarillas y con una variedad que producía las semillas verdes. Al hacer un cruzamiento entre estas plantas, obtenía siempre plantas con semillas amarillas.
¿Qué significaba esto? Que el polen de la planta progenitora aporta a la descendencia un alelo para el color de la semilla, y el óvulo de la otra planta progenitora aporta el otro alelo para el color de la semilla; de los dos alelos, solamente se manifiesta aquél que es dominante (A), mientras que el recesivo (a) permanece oculto.
Esta Ley de la uniformidad también se cumple cuando un determinado gen dé lugar a una herencia intermedia y no dominante, como es el caso del color de las flores del "dondiego de noche" (Mirabilis jalapa). Al cruzar las plantas de la variedad de flor blanca con plantas de la variedad de flor roja, se obtienen plantas de flores rosas.
La interpretación es la misma que en el caso anterior, solamente varía la manera de expresarse los distintos alelos.

segunda ley mendel

Esta ley se la conoce también como la Ley de la herencia independiente de caracteres.
x
Figura 7

Mendel concluyó que diferentes rasgos son heredados independientemente unos de otros, no existe relación entre ellos, por tanto el patrón de herencia de un rasgo no afectará al patrón de herencia de otro. Cada uno de ellos se transmite siguiendo las leyes anteriores con independencia de la presencia del otro carácter.
Sólo se cumple en aquellos genes que no están ligados (en diferentes cromosomas) o que están en regiones muy separadas del mismo cromosoma. Es decir, siguen las proporciones 9:3:3:1.
Para llegar a esta ley Mendel cruzó plantas de arvejas de semilla amarilla y lisa con plantas de semilla verde y rugosa ( Homocigóticas ambas para los dos caracteres).
Las semillas obtenidas en este cruzamiento eran todas amarillas y lisas, cumpliéndose así la Ley de la uniformidad para cada uno de los caracteres considerados, y revelándonos también que los alelos dominantes para esos caracteres son los que determinan el color amarillo y la forma lisa.
x
Figura 8

Las plantas obtenidas y que constituyen la F1 son dihíbridas (AaBb).
Estas plantas de la F1 se cruzan entre sí, teniendo en cuenta los gametos que formarán cada una de las plantas. Se puede apreciar que los alelos de los distintos genes se transmiten con independencia unos de otros, ya que en la segunda generación filial F2 aparecen arvejas amarillas y rugosas y otras que son verdes y lisas, combinaciones que no se habían dado ni en la generación parental (P), ni en la filial primera (F1).
Asimismo, los resultados obtenidos para cada uno de los caracteres considerados por separado, responden a la primera ley (de la segregación).
Los resultados de los experimentos de la segunda ley refuerzan el concepto de que los genes son independientes entre sí, que no se mezclan ni desaparecen generación tras generación.
x
Figura 9

Para esta interpretación fue providencial la elección de los caracteres, pues estos resultados no se cumplen siempre, sino solamente en el caso de que los dos caracteres a estudiar estén regulados por genes que se encuentran en distintos cromosomas. No se cumple cuando los dos genes considerados se encuentran en un mismo cromosoma, es el caso de los genes ligados.
En la etapa de metafase I de la meiosis I, los cromosomas están alineados en la región ecuatorial. El orden en el plano ecuatorial es al azar y determina la dirección que tomará cada uno de los cromosomas homólogos en las células hijas, fenómeno conocido como permutación cromosómica.
Sin embargo, el orden de migración entre cromosomas no homólogos a las células hijas es independiente entre sí y dependerá del orden azaroso que tengan los cromosomas en el plano ecuatorial.
De esta forma se deduce que la segunda ley de Mendel o de asociación independiente, ocurre en la metafase I, ya que pueden existir varias combinaciones posibles, por ejemplo, entre dos pares de cromosomas homólogos, llegando a formar cuatro tipos de gametos distintos si se alinean de una forma y cuatro muy distintos si se alinean de otra.
A modo de acotación importante, debemos destacar que en la meiosis la segunda ley de Mendel (de la asociación independiente) ocurre en la Metafase I, o sean antes que la primera (ley de la segregación), que ocurre en la Anafase I.

Interacciones alélicas

Tal y como Mendel descubrió en sus experimentos, entre los alelos de un mismo gen se producen interacciones. Él definió las relaciones de dominancia y de recesividad, pero existen otras.
Por ejemplo, los alelos no son siempre dominantes o recesivos, existen ocasiones en que se produce codominancia entre ellos, es decir, que ambos alelos aportan información para la manifestación del rasgo de que se trate. Algo así ocurre con los alelos que controlan el grupo sanguíneo en los seres humanos.
Existen tres alelos para el grupo sanguíneo, A, B, O. Cada alelo codifica para una proteína sanguínea excepto el O, que no codifica para ninguna. Una persona con grupo O tendrá un genotipo OO y en su sangre no se detectarán estas proteínas. Por tanto, al donar sangre, al no existir la proteína el cuerpo receptor no reacciona ante la transfusión. Por esto se dice que el grupo O es el donante universal.
En el caso de que una persona sea del grupo A o B, querrá decir que su sangre presenta una u otra proteína. Pero cuando una persona del grupo A tiene un hijo con otra del grupo B, puede ocurrir que ese hijo sea del grupo AB, es decir, que exprese de forma simultanea ambas proteínas, sin que ninguna domine sobre la otra.
Otra posibilidad que también descubrió Mendel en cuanto a las interacciones de los alelos es la llamada herencia intermedia. Esta interacción la descubrió experimentando con la planta llamada "dondiego de noche", que presenta flores de coloraciones diversas.
En los seres humanos existe algo similar en la herencia de una enfermedad, la anemia falciforme, que se caracteriza por una forma anómala de los glóbulos rojos que dificulta el transporte de oxígeno. Padres con anemia falciforme que tienen hijos con personas sanas pueden tener hijos cuyos glóbulos rojos presenten una forma intermedia entre ambos.

primera ley mendel

Conocida como la Ley de la segregación o separación equitativa o disyunción de los alelos, esta ley establece que para que ocurra la reproducción sexual, previo a la formación de los gametos cada alelo de un par se separa del otro miembro para determinar la constitución genética del gameto hijo.

En su experimento, Mendel cruzó diferentes variedades de semillas de individuos heterocigotos (diploides con dos variantes alélicas del mismo gen: Aa) de la primea generación (F1) del experimento anterior.
Del cruce obtuvo semillas amarillas y verdes en la proporción
x
Así, pues, aunque el alelo que determina la coloración verde de las semillas parecía haber desaparecido en la primera generación filial, vuelve a manifestarse en esta segunda generación.
Según la interpretación actual, los dos alelos distintos para el color de la semilla presentes en los individuos de la primera generación filial no se han mezclado ni han desaparecido, simplemente ocurría que se manifestaba sólo uno de los dos.
Esos dos alelos, que codifican para la característica color, son segregados durante la producción de gametos mediante una división celular meiótica. Esto significa que cada gameto va a contener un solo alelo para cada gen. Lo cual permite que los alelos materno y paterno se combinen en el descendiente, asegurando la variación.
Para cada característica, un organismo hereda dos alelos, uno de cada pariente. Esto significa que en las células somáticas, un alelo proviene de la madre y otro del padre. Éstos pueden ser homocigotos o heterocigotos.
Es importante aclarar que que los alelos se separan antes de que se formen los gametos. Precisamente es en la etapa de anafase I de la meiosis I cuando ocurre la separación de los cromosomas homólogos, momento en el que ocurre realmente la haploidia y se cumple con lo establecido por Mendel.
Otros casos para la primera ley
En el caso de los genes que presentan herencia intermedia, también se cumple el enunciado de la primera ley.

Retrocruzamiento de prueba
En el caso de los genes que manifiestan herencia dominante, no existe ninguna diferencia aparente entre los individuos heterocigóticos (Aa) y los homocigóticos (AA), pues ambos individuos presentarían un fenotipo amarillo.
La prueba del retrocruzamiento, o simplemente cruzamiento prueba, sirve para diferenciar el individuo homo del heterocigótico. Consiste en cruzar el fenotipo dominante con la variedad homocigota recesiva (aa).
Si es homocigótico, toda la descendencia será igual, en este caso se cumple la primera Ley de Mendel.
Si es heterocigótico, en la descendencia volverá a aparecer el carácter recesivo en una proporción del 50 por ciento.

lunes, 20 de mayo de 2013

Las leyes de Mendel

Las Leyes de Mendel son un conjunto de reglas básicas que explican la transmisión hereditaria (de padres a hijos) de los caracteres de cada especie, que se realiza exclusivamente mediante las células reproductivas o gametos

Gen: Unidad hereditaria que controla cada carácter en los seres vivos. A nivel molecular, corresponde a una sección de ADN que contiene información para la síntesis de una cadena proteínica.

Alelo: Cada una de las alternativas que puede tener un gen de un carácter. Por ejemplo, el gen que regula el color de la semilla de arveja presenta dos alelos, uno que determina color verde y otro que determina color amarillo. Por regla general se conocen varias formas alélicas de cada gen; el alelo más extendido de una población se denomina "alelo normal o salvaje", mientras que los otros, más escasos, se conocen como "alelos mutados".

Carácter cualitativo: Es aquel que presenta dos alternativas claras, fáciles de observar: blanco-rojo; liso-rugoso; alas largas-alas cortas; etc. Estos caracteres están regulados por un único gen que presenta dos formas alélicas (excepto en el caso de las series de alelos múltiples). Por ejemplo, el carácter color de la piel de la arveja está regulado por un gen cuyas formas alélicas se pueden representar por dos letras, una mayúscula (A) y otra minúscula (a).

Carácter cuantitativo: El que tiene diferentes graduaciones entre dos valores extremos. Por ejemplo, la variación de estaturas, el color de la piel; la complexión física. Estos caracteres dependen de la acción acumulativa de muchos genes, cada uno de los cuales produce un efecto pequeño. En la expresión de estos caracteres influyen mucho los factores ambientales.

Genotipo: Es el conjunto de genes que contiene un organismo heredado de sus progenitores. En organismos diploides, la mitad de los genes se heredan del padre y la otra mitad de la madre.

Fenotipo: Es la manifestación externa del genotipo; es decir, la suma de los caracteres observables en un individuo. El fenotipo es el resultado de la interacción entre el genotipo y el ambiente. El ambiente de un gen lo constituyen los otros genes, el citoplasma celular y el medio externo donde se desarrolla el individuo.

Locus: Es el lugar que ocupa cada gen a lo largo de un cromosoma (el plural es loci).

Homocigoto: Individuo que para un gen dado tiene en cada cromosoma homólogo el mismo tipo de alelo, por ejemplo, AA o aa.

Heterocigoto: Individuo que para un gen dado tiene en cada cromosoma homólogo un alelo distinto, por ejemplo, Aa.

A continuacion pondré un enlace a una animacion que explica las leyes y que servirá como ayuda:
http://recursostic.educacion.es/secundaria/edad/4esobiologia/4quincena6/ventanas/leyes_mendel.htm

miércoles, 15 de mayo de 2013

Gattaca

                                                       RESUMEN:

En el futuro, la mayor parte de los niños son concebidos in vitro y con técnicas de selección genética. Vincent es uno de los últimos niños concebidos de modo natural, pero nace con una deficiencia cardíaca por la cual no le otorgan más de treinta años de vida. Es un “no válido”, alguien condenado a ocupar los puestos menos gratos de la sociedad. Por el contrario, su hermano Anton recibe lo mejor de la carga genética de sus padres, lo cual le garantizará el acceso a infinidad de oportunidades. Desde niño, Vincent sueña con ir al espacio pero, por su condición de no válido, es consciente de que nunca podrá ser elegido haga lo que haga. Durante años ejerce toda clase de trabajos hasta que un día contacta con un hombre que le proporciona la llave para pasar a la élite: adoptar la identidad de Jerome, un deportista válido que se quedó paralítico por culpa de un accidente. Así Vincent podrá acceder a la Corporación Gattaca, una industria aeroespacial donde es seleccionado para una misión a Titán. Para hacer frente a las constantes pruebas genéticas a las que es sometido, deberá emplear inteligentemente las muestras de sangre y tejidos que Jerome le prepara. Todo irá bien hasta que el director de la misión es asesinado y las consecuentes investigaciones irán generándole dificultades para poder proseguir con su plan.

Binta y la gran idea

                                                      OPINION PERSONAL:

Binta y la gran idea muestra algunos problemas a los que se enfrentan los niños y niñas en África subsahariana, desde la mirada inocente y optimista de Binta. Es una contribución del cine a la protección de los derechos de la infancia en el mundo

                                                              RESUMEN:

Binta tiene siete años, vive en un preciosa aldea junto al río Casamance, en el sur de Senegal, y va al colegio. Su prima Soda no tiene la misma suerte. A ella no se le permite aprender las cosas que ignora de este mundo. Binta admira a su padre, un humilde pescador que, preocupado por el progreso de la humanidad, está empeñado en llevar a cabo algo que se le ha ocurrido.